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Abstract The thermomechanical deformation in an orthotropic micropolar
generalized thermoelastic half-space is investigated. Descarte’s method, along with
the irreducible case of Cardon’s method, is used to obtain the roots of an eight-degree
equation. Laplace and Fourier transform techniques are used to obtain the general solu-
tion for the set of boundary value problems. Particular types of boundary conditions
have been taken to illustrate the utility of the approach. The transformed components
of the stresses and temperature distribution have been obtained. A numerical inversion
technique is employed to invert the integral transform, and the resulting quantities are
presented graphically.
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1 Introduction

The classical continuum theory was based on the assumption that all material bodies
possess continuous mass densities, independent of how small they might be. However,
the molecular theory of matter had shown that when the volume became smaller than
a certain limit, the material body behaved quite differently. As a result, the classical
continuum theory might no longer serve as an appropriate mathematical model when
the length scale was comparable to the average grain or molecular size contained in
the body. If the physical phenomenon under study had a certain characteristic length,
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which was comparable to the size of the grains in the body, the microstructure of the
material must be considered.

Micropolar elasticity theory, which takes into consideration the granular character
of the medium, describes deformation by a microrotation and a macrodisplacement.
Eringen first showed that the classical elasticity theory [1] and the coupled stress the-
ory [2] are two special cases of the micropolar elasticity theory. The coupled theory
of classical thermoelasticity consists of two equations. One of them is the partial dif-
ferential equation of motion, and the other is the heat conduction equation. The latter
equation is of a diffusion type, predicting infinite speeds of propagation for thermal
signals, which is physically absurd. To overcome this drawback, generalized theories
of thermoelasticity were developed.

The first was developed by Lord and Shulman [3], who obtained a wave-type heat
equation by postulating a new law of heat conduction to replace the classical Fourier
law. This new law contains the heat flux vector and its time derivative. It also contains a
new constant that acts as a relaxation time. The remaining governing equations for this
theory, namely, the equation of motion and the constitutive relations, remain the same
as those for coupled and uncoupled theories. The second was developed by Green and
Lindsay [4]. This theory contains two relaxation times and modifies not only the heat
conduction equation, but also all the equations of coupled theory. The two theories
ensure a finite speed of propagation of a heat wave. These theories were extended by
Dhaliwal and Sherief [5] to general anisotropic media in the presence of heat sources.

The dynamic response function of elastically anisotropic solids is of interest in
many fields including crystal acoustics, solid-state physics, non-destructive testing,
material characterization, seismology, applied mechanics, and mathematics. In recent
years, the elastodynamic response of an anisotropic continuum has received the atten-
tion of several studies. Wang and Achenbach [6] obtained a two-dimensional time
domain elastodynamic displacement Green’s function for general anisotropic solids.
Wu [7] provided an explicit solution for the surface displacements due to an impulsive
line source within a general anisotropic half-space.

The linear theory of micropolar thermoelasticity was developed by extending the
theory of micropolar continua to include thermal effects by Nowacki [8] and Eringen
[9]. Tauchert et al. [10] also derived the basic equations of the linear theory of mi-
cropolar thermoelasticity. Dost and Tabarrok [11] presented the theory of micropolar
generalized thermoelasticity by using the Green-Lindsay theory. Chandrasekhariah
[12] formulated a theory of micropolar thermoelasticity which includes a heat-flux
vector among the constitutive variables. Martynenko and Bosyakov [13] investigated
a surface of discontinuity for a cubically anisotropic body in the theory of micro-
polar thermoelasticity. Hasan and Dyszlewicz [14,15] discussed some problems in
the theory of micropolar thermoelasticity. Tian-Min [16] restudied the coupled field
theories for micropolar continua and micropolar thermoelasticity. Martynenko and
Bosyakov [17] investigated the wave process in a thermoelastic micropolar solid body
by the method of the theory of characteristics. Recently, Kumar and Ailawalia [18–21]
discussed various problems in micropolar thermoelasticity.

Iesan [22] studied the static theory of anisotropic micropolar elastic solids and
proved the positive definiteness of his operator for the first boundary value prob-
lem. Kumar and Choudhary [23–25] discussed various problems in an orthotropic
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micropolar continuum. However, no attempt has been made to study the thermal effect
in an orthotropic micropolar solid due to various sources.

The potential function approach is often used by many investigators to solve var-
ious problems. This however, has several disadvantages as outlined in [26]. These
may be summarized in the fact that the boundary conditions that naturally arise in a
typical boundary value problem are directly related to the actual physical quantities
that appear in the governing equations, and not the potential function associated with
the problem. Thus, the introduction of an auxiliary potential function in formulating
the problems appears artificial and not physically motivated and, hence, not intuitively
appealing, despite the simplification it brings about in the theoretical development and
discussion. Secondly, a more stringent assumption must be made on the behavior of
the potential function than on the actual physical quantities. Last of all, it was found
that many integral representations of physical quantities are convergent in the classical
sense, while the potential functions from which they are derivable only converge in a
distributional sense. Because of all these reasons, many researchers avoided the use of
potential functions. Among the alternatives is the approach that we have used in the
present paper.

In high-temperature applications, thermal stresses generated from a heat tempera-
ture increase and cooling processes may rise above the ultimate strength and lead to
unexpected failures. Thus, the importance of the thermal stresses in causing structural
damage and changes in functionality of the structure is well recognized whenever ther-
mal environments are involved. Therefore, the ability to predict elastodynamic stresses
induced by sudden thermal loading in a composite structure is essential for proper and
safe design and the knowledge of its response during service in these thermal appli-
cations. For the case of a suddenly applied thermal loading, thermal deformation and
the role of inertia become more significant.

The determination of the state of stress in the materials of the earth due to the pres-
ence of certain sources in the interior of the earth is of great importance in the field of
geomechanics, soil mechanics, etc. Here, in the present investigation, we studied the
general plane strain problem of an orthotropic micropolar thermoelastic half-space
with one relaxation time. Integral transform techniques have been used to solve it.
The transformed components of normal stress, tangential stress, tangential couple
stress, and temperature distribution in an orthotropic micropolar thermoelastic solid
due to mechanical and thermal sources (concentrated/distributed/moving) have been
determined.

2 Basic Equations

The basic equations in the dynamic theory of a homogeneous, orthotropic micropolar
generalized thermoelastic solid with one relaxation time in the absence of body forces,
body couples, and heat sources following Iesan [22] and Dhaliwal and Singh [27] can
be expressed as

t j i, j = ρ üi , (1)

mik,i + εi jk ti j = ρ j φ̈k, i, j, k = 1, 2, 3. (2)
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and the heat conduction equation is given by

K ∗
1
∂2T

∂x2
1

+ K ∗
2
∂2T

∂x2
2

= ρC∗
(
∂T

∂t
+ τ0

∂2T

∂t2

)

+ T0

(
∂

∂t
+ τ0

∂2

∂t2

) (
β1
∂u1

∂x
+ β2

∂u2

∂y

)
. (3)

The constitutive relations are

t11 = A11ε11 + A12ε22 − β1T, t12 = A77ε12 + A78ε21,

t22 = A12ε11 + A22ε22 − β2T, t21 = A78ε12 + A88ε21, (4)

m13 = B66φ3,1, m23 = B44φ3,2,

where

εi j = u j,i + ε j i3φ3. (5)

Here the relation between βi and the coefficients of linear thermal expansion αi are
given by

β1 = A11α1 + A12α2, β2 = A21α1 + A22α2.

In the above relations, we have used the following notations:
ρ is the density, j is the microinertia, ti j are the components of the stress sen-

sor, mi j are the components of the couple stress tensor, ui are the components of
the displacement vector, φk are the components of the microrotation vector, εi j are
the components of the micropolar strain tensor, τ0 is the relaxation time, εi jk is the
permutation symbol, A11, A12, A77, A78, A88, B44, B66 are the characteristic con-
stants of the material, K ∗

1 and K ∗
2 are the thermal conductivities, and C∗ is the specific

heat at constant strain.

3 Formulation of the Problem

We consider a homogeneous, orthotropic micropolar generalized thermoelastic
medium in an undisturbed state, initially at a uniform temperature To. We introduce
the rectangular Cartesian coordinate system (x1, x2, x3) which has its origin on the
surface x2 = 0 with the x2 -axis pointing normally into the medium. Since we are
considering the two-dimensional problem parallel to the x1x2 -plane, the components
of the displacement vector �u and microrotation vector �φ can be expressed by

�u = (u1, u2, 0), �φ = (0, 0, φ3) (6)

The displacement components u1, u2, microrotation component φ3, and temperature
distribution T depend upon x1, x2, and t and are independent of x3 coordinate, so that
∂
∂x3

≡ 0.
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To facilitate the solution, the following dimensionless quantities are introduced:

(x ′
1, x ′

2) = ω∗(x1, x2)

c1
, (u′

1, u′
2) = ρc1ω

∗(u1, u2)

β1T0
, t ′i j = ti j

β1T0
,

m′
23 = ω∗m23

c1β1T0
, φ′

3 = ρc2
1φ3

β1T0
, T ′ = T

T0
, τ ′

1 = ω∗τ1,

t ′ = ω∗t, τ ′
0 = ω∗τ0, P ′

1 = P1

β1To
, P ′

2 = P2

To
,

where

ω∗ = ρC∗c2
1

K ∗
1
, c2

1 = A11

ρ
. (7)

With these considerations and using Eqs. 4– 7, Eqs. 1–3 take the form (on suppressing
the prime),

(
∂2

∂x2
2

+ d1d4
∂2

∂x2
1

)
u1 + (d2 + d3)

∂2u2

∂x1∂x2
− (d3 − 1)

∂φ3

∂x2

−d1d4
∂T

∂x1
= d1d4

∂2u1

∂t2 , (8)

(d2 + d3)

d4

∂2u1

∂x1∂x2
+

(
∂2

∂x2
2

+ d5

d4

∂2

∂x2
1

)
u2 − (d5 − d3)

d4

∂φ3

∂x1

−β̄d1
∂T

∂x2
= d1

∂2u2

∂t2 , (9)

d7(d3 − 1)
∂u1

∂x2
+ d7(d5 − d3)

∂u2

∂x1

+
(
∂2

∂x2
2

+ d6
∂2

∂x2
1

− d7(d5 − 2d3 + 1)

)
φ3 = d8

∂2φ3

∂t2 , (10)

(
∂2

∂x2
1

+ K̄
∂2

∂x2
2

)
T =

(
∂

∂t
+ τ0

∂2

∂t2

)
T

+ε
(
∂

∂t
+ τ0

∂2

∂t2

) (
∂u1

∂x1
+ β̄

∂u2

∂x2

)
, (11)

where

d1 = A11

A22
, d2 = A12

A88
, d3 = A78

A88
, d4 = A22

A88
, d5 = A77

A88
, d6 = B66

B44
,

d7 = A88c2
1

B44ω∗2 , d8 = ρ jc2
1

B44
, K̄ = K ∗

2

K ∗
1
, β̄ = β2

β1
, ε = β2

1 T0

ρK ∗
1ω

∗ .
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Applying Laplace and Fourier transforms defined by

f̄ (x1, x2, p) =
∫ ∞

0
f (x1, x2, t)e−pt dt, (12)

f̃ (ξ, x2, p) =
∫ ∞

−∞
f̄ (x1, x2, t)eiξ x1 dx1. (13)

to Eqs. 8–11, under the assumptions of initial conditions u1(x1, x2, 0)=
{
∂u1
∂t

}
t=0

= 0,

u2(x1, x2, 0) =
{
∂u2

∂t

}
t=0

= 0,

φ3(x1, x2, 0) =
{
∂φ3

∂t

}
t=0

= 0, T (x1, x2, 0) =
{
∂T

∂t

}
t=0

= 0,

and assuming u1, u2, φ3, T and their first-order partial derivatives with respect to x1
tend to zero as x2 → ±∞, we obtain

(
d2

dx2
2

− h

)
ũ1 − iξ(d2 + d3)

dũ2

dx2
− e

dφ̃3

dx2
+ iξd1d4T̃ = 0, (14)

−iξ(d2 + d3)

d4

dũ1

dx2
+

(
d2

dx2
2

− a11

)
ũ2 + iξ(d5 − d3)

d4
φ̃3 − β̄d1

dT̃

dx2
= 0, (15)

d7(d3 − 1)
dũ1

dx2
− d7iξ(d5 − d3)ũ2 +

(
d2

dx2
2

− a

)
φ̃3 = 0, (16)

−iξε g ũ1 − εβ̄g
dũ2

dx2
+

(
d2

dx2
2

− f

)
T̃ = 0. (17)

where

a = ξ2d6 + d7(d5 − 2d3 + 1)+ d8 p2, b = ξ2 (d2 + d3)(d2 + d4)

d4
, e = d3 − 1,

f = ξ2 + p + τ0 p2

K̄
, g = (1 + τ1 p)d1

(
p + n0τ0 p2

K̄

)
, h =

(
ξ2 + p2

)
d1d4,

a11 = d1 p2 + ξ2d5

d4
.

The system has a non-trivial solution if and only if the determinant of the factor
matrices vanishes. This yields

(
d8

dx8
2

+ A
d6

dx6
2

+ B
d4

dx4
2

+ C
d2

dx2
2

+ D

)(
ũ1, ũ2, φ̃3, T̃

)
= 0, (18)
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where

A = − f − a − a11 + β̄2g − h + b + d7e2,

B = f
[
a + a11 + h − b − d7e2

]
+ g

[
−β̄2

(
a + h + d7εe

2
)

− εξ2β̄(2d2 + d3)
]

+a(a11 + h − b)− a′ + p2hd1 − a11d7e2 − ξ ed7(d3 − d4)(d5 − d3)

d4
,

C = f
{

a11d7e2 +
[
−a11 − h + 2b − 2hd1 p2 − ξ2(2d2 + d3 + d4)

]}
+ g{ahβ̄2

+ξ2aεβ̄(d4 − d3)− 2β̄εξ2d7e(d5 − d3)+ εξ2d4a11} + (a + h)a′,

D =
(

f h − ξ2gd4ε
) (

a11a + a′), a′ = ξ2d7(d5 − d3)
2

d4
.

The solution of Eq. 18 satisfying the radiation condition that ũ1, ũ2, φ̃3, T̃ → 0 as
x2 → ∞ is

(
ũ1, ũ2, φ̃3, T̃

)
=

4∑
i=1

Ai (1, ri , si , ti )e
−qi x2 , (19)

whereAi (i = 1, . . ., 4) are the arbitrary constants to be determined using the boundary
conditions and ± qi (i = 1, . . ., 4)are the roots of Eq. 18 satisfying

4∑
i=1

q2
i = −A,

4∑
i=1

q2
i q2

j = B,
4∑

i=1

q2
i q2

j q2
k = −C, q2

1 q2
2 q2

3 q2
4 = D,

ri = a1q5
i + a2q3

i + a3qi

a4q4
i + a5q2

i + a6
, si = −a1q3

i + ri
(
a10q2

i − a11
) + a9qi

a7q2
i − a8

,

a1 = β̄

iξd4
, ti = iξsi qi e − q2

i + h + iξri qi (d2 + d3)

iξd1d4
,

a2 = −β̄h + ξ2(d2 + d3)− aβ̄ + d7e2

iξd4
,

a3 = a
(
β̄h − ξ2(d2 + d3)− ξ2d7e(d5 − d3)

)
iξd4

,

a4 = 1 − β̄(d2 + d3)

d4
, a6 = aa11 − a′,

a5 = −a11 − aa4 − β̄e(d5 − d3)d7

d4
, a7 = β̄e

iξd4
,

a8 = iξ(d5 − d3)

d4
, a9 = β̄h − ξ2(d2 + d3)

iξd4
, a10 = a4.
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4 Boundary Conditions

The boundary conditions on the surface x2 = 0 are given as

(i) t22 = −P1ψ(x1)η(t),

(ii) t21 = 0,

(iii) m23 = 0, (20)

(iv) T = P2η(x1)δ(t),

where P1 is the magnitude of force and P2 is the constant temperature applied on the
boundary; also, ψ(x1) and η(x1)are the known functions and δ(t) is the Dirac delta
function whose Laplace transform with respect to ‘t’ is

δ̄(p) = 1. (21)

Using Eq. 7 and then applying Laplace and Fourier transforms from Eqs. 12 and 13 to
the system of Eq. 20, and with the help of Eq. 19, we obtained the values of arbitrary
constants Ai (i = 1, . . ., 4). Using these values, and with the help of Eqs. 4 and 5, we
get the transformed components of normal stress, tangential stress, tangential couple
stress, and temperature distribution as

t̃22 = 1




(

1c∗

1e−q1x2 +
2c∗
2e−q2x2 +
3c∗

3e−q3x2 +
4c∗
4e−q4x2

)
, (22)

t̃21 = 1




(

1a∗

1 e−q1x2 +
2a∗
2 e−q2x2 +
3a∗

3 e−q3x2 +
4a∗
4 e−q4x2

)
, (23)

m̃23 = 1




(

1b∗

1e−q1x2 +
2b∗
2e−q2x2 +
3b∗

3e−q3x2 +
4b∗
4e−q4x2

)
, (24)

T̃ = 1




(

1t1e−q1x2 +
2t2e−q2x2 +
3t3e−q3x2 +
4t4e−q4x2

)
, (25)

where

a∗
i = −d3iξri − qi − esi

d1d4
, b∗

i = − qi si

d1d4d7
,

c∗
i = −d2iξri − qiri d4 − β̄ti d1d4

d1d4
, i = 1, 2, 3, 4.


 = (
c∗

1a∗
2 − c∗

2a∗
1

) (
b∗

3s4 − s3b∗
4

) + (
c∗

3a∗
1 − c∗

1a∗
3

) (
b∗

2s4 − s2b∗
4

)
+ (

c∗
1a∗

4 − c∗
4a∗

1

) (
b∗

2s3 − s2b∗
3

) + (
c∗

2a∗
3 − c∗

3a∗
2

) (
b∗

1s4 − s1b∗
4

)
+ (

c∗
4a∗

2 − c∗
2a∗

4

) (
b∗

1s3 − s1b∗
3

) + (
c∗

3a∗
4 − c∗

3a∗
4

) (
b∗

1s2 − s1b∗
2

)
,


1 = −P̃1ψ̃1 (ξ)
[
a∗

2

(
b∗

3s4 − s3b∗
4

) − a∗
3

(
b∗

2s4 − s2b∗
4

) + a∗
4

(
b∗

2s3 − s2b∗
3

)]
+P̃2η̃ (ξ)

[
c∗

2

(
b∗

3s4 − s3b∗
4

) − c∗
3

(
b∗

2s4 − s2b∗
4

) + c∗
4

(
b∗

2s3 − s2b∗
3

)]
,


2 = P̃1ψ̃1 (ξ)
[
a∗

1

(
b∗

3s4 − s3b∗
4

) − a∗
3

(
b∗

1s4 − s1b∗
4

) + a∗
4

(
b∗

1s3 − s1b∗
3

)]
−P̃2η̃ (ξ)

[
c∗

1

(
b∗

3s4 − s3b∗
4

) − c∗
3

(
b∗

1s4 − s1b∗
4

) + c∗
4

(
b∗

1s3 − s1b∗
3

)]
,

123



Int J Thermophys (2009) 30:693–709 701


3 = −P̃1ψ̃1 (ξ)
[
a∗

1

(
b∗

2s4 − s2b∗
4

) − a∗
2

(
b∗

1s4 − s1b∗
4

) + a∗
4

(
b∗

1s2 − s1b∗
2

)]
+P̃2η̃ (ξ)

[
c∗

1

(
b∗

2s4 − s2b∗
4

) − c∗
2

(
b∗

1s4 − s1b∗
4

) + c∗
4

(
b∗

1s2 − s1b∗
2

)]
,


4 = P̃1ψ̃1(ξ)
[
a∗

1(b
∗
2s3 − s2b∗

3)− a∗
2(b

∗
1s3 − s1b∗

3)+ a∗
3(b

∗
1s2 − s1b∗

2)
]

+P̃2η̃(ξ)
[−c∗

1(b
∗
2s3 − s2b∗

3)+ c∗
2(b

∗
1s3 − s1b∗

3)− c∗
3(b

∗
1s2 − s1b∗

2)
]
. (26)

When P2 = 0, we obtain the solutions for the mechanical force, and when P1 = 0, we
obtain the solutions for the thermal source.

5 Applications

5.1 Mechanical Force

5.1.1 Concentrated Normal Force

In order to determine the stresses and temperature distribution due to a concentrated
force described as a Dirac delta function, we use ψ(x1) = δ(x1) with

ψ̃(ξ) = 1. (27)

5.1.2 Uniformly Distributed Normal Force

The solution due to force distributed over a strip load of dimensionless width 2a
applied at the plane boundary x2 = 0 is obtained by setting

ψ(x1) = H(x1 + a)− H(x1 − a), (28)

in Eq. 20. Applying the Fourier transform defined by Eq. 13 to Eq. 28, we obtain

ψ̃(ξ) = 2 sin(ξa)

ξ
, ξ �= 0. (29)

5.1.3 Moving Normal Force

To obtain the solution due to an impulsive force, moving along the x1 axis with a
uniform dimensionless speed V at x2 = 0, we use the boundary conditions defined by
Eq. 20 by replacing condition (i) with

t22 = −P1 H(t)δ(x1 − V t). (30)

Using Eqs. 4–6 and then applying Laplace and Fourier transforms defined by Eqs. 12
and 13 to Eq. 30, we obtain

t̃22 = −P1

(p − iξV )
. (31)
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The expressions for the stresses and temperature distribution can be obtained in the
cases of concentrated and distributed normal forces by substituting the value of ψ̃(ξ)
from Eqs. 27 and 29 and in the case of a moving force by

−P1

(p − iξV )
,

in Eq. 26.

5.2 Thermal Source

5.2.1 Concentrated Thermal Source

To determine the normal stress, tangential stress, tangential couple stress, and temper-
ature distribution due to a concentrated source described by the Dirac delta function,
η(x1) = δ(x1) should be used with

η̃(ξ) = 1. (32)

5.2.2 Uniformly Distributed Thermal Source

The solution due to a force distributed over a strip load of dimensionless width 2a
applied on the half-space is obtained by setting

η(x1) = H(x1 + a)− H(x1 − a), (33)

in Eq. 20. Applying the Fourier transform defined by Eq. 13 to Eq. 33, we obtain

η̃(ξ) = 2 sin(ξa)

ξ
, ξ �= 0. (34)

5.2.3 Moving Thermal Source

In this case, boundary condition (iv) in Eq. 20 takes the form

T = P2 H(t) δ(x1 − V t). (35)

Using Eqs. 4–7 and then applying Laplace and Fourier transforms defined by Eqs. 12
and 13 to Eq. 35, we obtain

T̃ = P2

(p − iξV )
. (36)

The expressions for the stresses and temperature distribution can be obtained for con-
centrated and distributed thermal sources by substituting the value of η̃(ξ) from Eqs.
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32 and 34 and in the case of a moving thermal source by

P2

(p − iξV )
,

in Eq. 26.

6 Particular Cases

(i) Neglecting the thermal effect, we obtain the corresponding expressions in the
case of the orthotropic micropolar solid and our results agree with those obtained
by Kumar et al. [23].

(ii) Neglecting the effect of orthotropy, i.e., by taking

A11 = A22 = λ+ 2µ+ K , A77 = A88 = µ+ K , A12 = λ,

A78 = µ, −K1 = K2 = χ

2
= K ,

we obtain the corresponding expressions in the case of a micropolar generalized ther-
moelastic solid and our results agree with those obtained by Kumar et al. [28] in the
case of the concentrated mechanical normal force and thermal source.

7 Inversion of the Transforms

To obtain the solution to the problem in the physical domain, we must invert the
transforms in Eqs. 22–25. The transformed stresses and temperature distribution are
functions of x2, the parameters of Laplace and Fourier transforms p and ξ , respectively,
and hence are of the form f̃ (ξ, x2, p).To get the function in the physical domain, we
first invert the Fourier transform using

f̄ (x1, x2, p) = 1

2π

∫ ∞

−∞
f̄ (ξ, x2, p)e−iξ x1 dξ

= 1

π

∫ ∞

0

[
f̄e cos(ξ, x2)− i f̄0 sin(ξ, x2)

]
dξ, (37)

where fe and fo are, respectively, even and odd parts of the function f̃ (ξ, x2, p).
Thus, Eq. 37 gives us the Laplace transform f̃ (ξ, x2, p) of the function f (x1, x2, t).
Following Honig and Hirdes [29], the Laplace transform function f̃ (ξ, x2, p)can be
inverted to f (x1, x2, t). The last step is to calculate the integral in Eq. 37. The method
for evaluating this integral is described by Press et al. [30]. It involves the use of Rhom-
berg’s integration with an adaptive step size. This also uses the results from successive
refinements of the extended trapezoidal rule followed by extrapolation of the results
to the limit when the step size tends to zero.
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8 Numerical Results and Discussion

Numerical computations are carried out by taking an aluminum epoxy material, sub-
jected to mechanical and thermal disturbances. The physical constants for the ortho-
tropic micropolar thermoelastic solid used by us are:

A11 = 13.97 × 109 N · m−2, A77 = 3.0 × 109 N · m−2,

A88 = 3.2 × 109 N · m−2, A22 = 13.75 × 109 N · m−2,

A12 = 8.13 × 109 N · m−2, A78 = 2.2 × 109 N · m−2,

B44 = 0.056 × 105 N, B66 = 0.056 × 105 N.

Following Gauthier [31], the physical constants for the isotropic micropolar thermo-
elastic solid are taken as:

ρ = 2.19 × 103 kg · m−3, λ = 7.59 × 109 N · m−2, µ = 1.89 × 109 N · m−2,

K = 0.0149 × 109 N · m−2,C∗ = 0.23 J · Kg−1 · K−1,

γ = 0.0268 × 105 N, j = 0.196 × 10−4 m2.

The comparison of the normal stress, tangential couple stress, and temperature
distribution for an orthotropic micropolar thermoelastic solid (OMTS) and isotropic
micropolar thermoelastic solid (IMTS) is shown in Figs. 1, 2, 3, 4, 5, 6, and 7. The
computations were carried out at x2 = 0.1 within the range 0 ≤ x1 ≤ 10. The curves
represented by solid lines with or without a center symbol correspond to the case of
OMTS whereas the curves represented by dotted lines with or without a center symbol
correspond to the case of IMTS. All the results are shown for one value of a dimension-
less width a = 0.04 and two values of dimensionless time t = 0.1 and 0.2. In Figs. 1, 2,
and 3, solid and dotted lines without a center symbol represent the variations due to a
concentrated source (C) whereas solid and dotted lines with center symbol (−0−0−)
represent the variations due to a uniformly distributed source (UD). In Figs. 4, 5, and
6 , solid and dotted lines without a center symbol represent the variations at t = 0.1,
whereas solid and dotted lines with center symbol (−0 − 0−) represent the variations
at t = 0.2.

Figure 1 shows the variation of normal stress t22 with respect to distance x . For
OMTS, on the application of both concentrated and uniformly distributed forces, the
value of the normal stress t22 starts with a sharp increase within the range 0 ≤ x1 ≤ 2
and then oscillates with a decreasing amplitude, whereas for IMTS its value initially
increases and then oscillates about the zero value.

The variation of m23with respect to distance x is shown in Fig. 2. In the case of
OMTS, on the application of both concentrated and uniformly distributed forces, the
value of m23 oscillates with a decreasing amplitude; however, for IMTS, its value
oscillates with increasing magnitude.

It is observed from Fig. 3 that the variation of the temperature distribution T , for
OMTS, decreases and then oscillates with very small oscillations about the zero value,
while for IMTS, the curve shows the oscillatory behavior. The values of t22, m23, and
T for both orthotropic and isotropic solids on the application of a concentrated force
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Fig. 1 Variation of the normal stress t22with respect to distance x due to mechanical force
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Fig. 2 Variation of the tangential couple stress m23 with respect to distance x due to mechanical force

are shown in the figure by dividing their original values by 10. Figures 4, 5, and 6
show the variations in the values of the normal stress, tangential couple stress, and
temperature distribution due to a moving thermal source.
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Fig. 3 Variation of the temperature distribution T with respect to distance x due to mechanical force
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Fig. 4 Variation of the normal stress t22 with respect to distance x due to moving thermal source

From Fig. 4 it is observed that the values of t22 at t = 0.1 initially decrease and
then oscillate with a decreasing amplitude, while at t = 0.2, its value oscillates with
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Fig. 5 Variation of the tangential couple stress m23with respect to distance x due to moving thermal source
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Fig. 6 Variation of the temperature distribution T with respect to distance x due to moving thermal source

a very large amplitude, in the case of OMTS. However, for IMTS its value decreases
and approaches zero for both the values t = 0.1 and t = 0.2.

Figure 5 depicts the variation of the tangential couple stress m23 with respect to
distance x due to a moving thermal source. In the case of OMTS and IMTS, the value
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Fig. 7 Variation of the temperature distribution T with respect to distance x

of tangential couple stress increase or decrease, respectively, with distance x for both
t = 0.1 and t = 0.2. Its value decreases with an increase in anisotropy.

It is evident from Fig. 6 that the variation of the temperature distribution is exactly
opposite to the variation of t22 for OMTS while in the case of IMTS, its value increases
with an increase in distance x. In the figure showing the temperature distribution T ,
the graph shows the negative values of T , which in fact refer to the small temperature
change. It is decreasing in nature, then reaches zero, and then again starts decreasing in
agreement with the theoretical results. Also in Fig. 7 the variations of T with distance
x at two different values of tare shown within the range −2 ≤ x1 ≤ 2. The variation
of T for OMTS and IMTS at t = 0.1 is exactly opposite in nature, while at t = 0.2, its
behavior is similar for OMTS and IMTS. Similar observations have also been made
by Ezzat et al. [32] and Chandrasekhariah and Srinath [33].

9 Conclusion

A significant anisotropy effect has been observed on the normal stresst22 tangential
couple stress m23 and temperature distribution T . From the above discussion, it is
evident that variations of stresses and temperature distribution on the application of
different forces follow a similar trend and behavior except for a slight variation in their
amplitudes. Initially, the magnitude of stress on application of a uniformly distributed
force is large in comparison to that obtained when a concentrated force is applied,
but afterward it becomes larger for a concentrated force in both cases, orthotropic and
isotropic. However, for a temperature distribution, reverse behavior is observed. It is
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also observed that, when a moving thermal source is applied, the values of stresses
and T increase for an orthotropic micropolar thermoelastic solid with an increase in
time, while the behavior is opposite for an isotropic micropolar thermoelastic solid.
With an increase in anisotropy, the values of the normal stress and tangential couple
stress decrease while the reverse behavior is observed for a temperature distribution.
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